

Air Movement for Energy-Efficient Comfort in Conditioned Spaces

Andy Chou

Managing Director – East Asia

SOLUTIONS

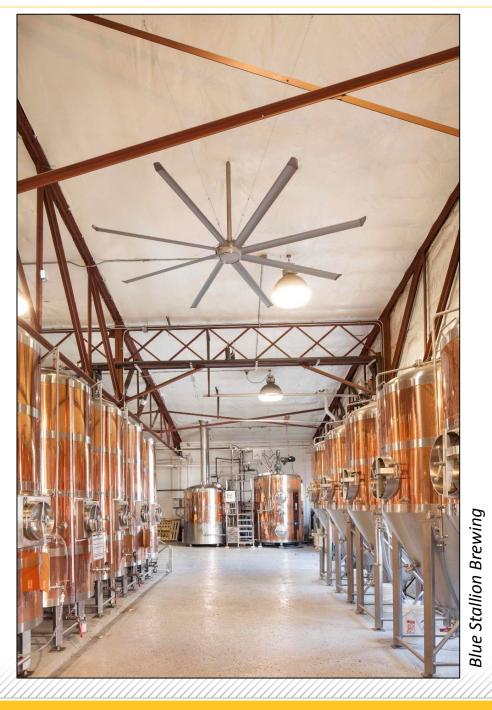
Matt Chan

AE specialist – East Asia <u>matt.chan@bigassfans.hk</u> +852 2710 5324

SOLUTIONS

Big Ass Fans provides Continuing Professional Development in collaboration with the agencies listed.

Course Credit: 1 CPD hour


RIBA

香港建築師學會 The Hong Kong Institute of Architects

Course Description

As we move increasingly towards market viable net-zero buildings with initiatives like the Hong Kong Environmental Bureau's *Energy Saving Plan for Hong Kong's Built Environment*, we must reevaluate the role that typical building components play in a facility's energy efficiency.

ASHRAE 55 has highlighted the impact of <u>elevated air speed on</u> <u>thermal comfort</u>, and in recent years innovative designs have reestablished air movement as an <u>integral part of occupant comfort</u> <u>and energy conservation</u>. Furthermore, recent changes to Appendix G of ASHRAE 90.1 allow the inclusion of energy savings from using elevated air speed in energy simulations.

When integrated into new building designs, air movement allows a reduction of air conditioning capacity and ductwork. In the winter, low speed air circulation redirects heated air trapped at the ceiling, resulting in significant energy savings. Project teams working on netzero buildings have proven the effectiveness of incorporating air movement in building plans as part of an integrated design strategy.

Bullitt Center Office

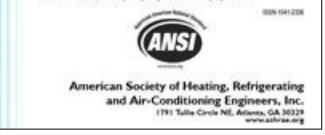
Learning Objectives

- 1. Identify the factors that affect thermal comfort.
- 2. Explain the use of elevated air speed for efficient air distribution and energy savings within air conditioned spaces.
- 3. Describe the additional design benefits of minimizing ductwork, lowering HVAC costs, improving ventilation rates and reducing condensation.
- 4. Understand stratification and the significant energy saving potential from destratification

ASHRAE 55

ASHRAE Standard 55: Thermal Comfort

ANSUASHRAE Standard 55-2010 (Supersedes ANSUASHRAE Standard 55-2004) Includes ANSUASHRAE addenda listed in Appendix 1


ASHRAE STANDARD

Thermal Environmental Conditions for Human Occupancy

Sam Appands I for approval dates by the ASHINE Standards Consultion, the ASHINE Board of Sensitive, and the Assertain Ratemat Standards institute.

This structure is order construction transformation by a Structure (Equipping Construction (SSPC) for which for Standards Construction from construction of program for register publication of activities or realmons, relativity provideres for thirds, discontential construction active in respect to change to any part of the structure. This charge scalarities have, an interview, and disadfrees may be ablered to electronic from theory of the structure. This charge scalarities have, an interview, and disadfrees may be ablered to electronic from theory and SSPARE Structure of the produced from the SSPARE structure of Structure and and activity Continues Structure Structure (SSPARE). The SSPARE structure is structure active active and SSPARE Structure of the produced from the SSPARE structure of scalar active SSPARE Structure Structure (SSPARE), and SSPARE structure (SSPARE). Structure SSPARE SSPARE structure (SSPARE), and SSPARE structure (SSPARE). Structure structure SSPARE structure (SSPARE), and SSPARE structure (SSPARE). Structure structure (SSPARE), the SSPARE structure (SSPARE) and SSPARE structure structure (SSPARE) and SSPARE structure structure (SSPARE). Structure structure (SSPARE), and SSPARE structure structure (SSPARE) and SSPARE structure structure (SSPARE). Structure structure structure (SSPARE) and SSPARE structure structure structure (SSPARE). Structure s

@2013 Research County of Vesting Relitionship and Nr. Conditioning Engineers, Inc.

ANSI/ASHRAE Standard 55-2013 (Supersedes ANSI/ASHRAE Standard 55-2010) Includes ANSI/ASHRAE addenda listed in Appendix M

Thermal Environmental Conditions for Human Occupancy

See Appendix M for approval dates by the ASHRAE Standards Committee, the ASHRAE Board of Directors, and the American National Standards Institute.

This standard is under continuous maintenance by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions, including procedures for timely, documented, consensus action on requests for change to any part of the standard. The change submittal form, instructions, and deadlines may be obtained in electronic form from the ASHRAE Web site (www.ashrae.org) or in paper form from the Manager of Standards. The latest edition of an ASHRAE Standard may be purchased from the ASHRAE Web site (www.ashrae.org) or from ASHRAE Customer Service, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305. E-mail: orders@ashrae.org, Fax: 678-539-2129. Telephone: 404-336-8400 (worldwide), or toil free I-800-527-4723 (for orders in US and Canada). For reprint permission, go to www.ashrae.org/permissions.

© 2013 ASHRAE ISSN 1041-2336

STANDARD

Purpose of Standard 55

"Specify the combination of indoor thermal <u>environmental factors</u> and <u>personal factors</u> that will produce thermal environmental conditions <u>acceptable to a</u> <u>majority of the occupants</u>..."

Said another way: *Comfort for most*

ASHRAE Standard 55-2013

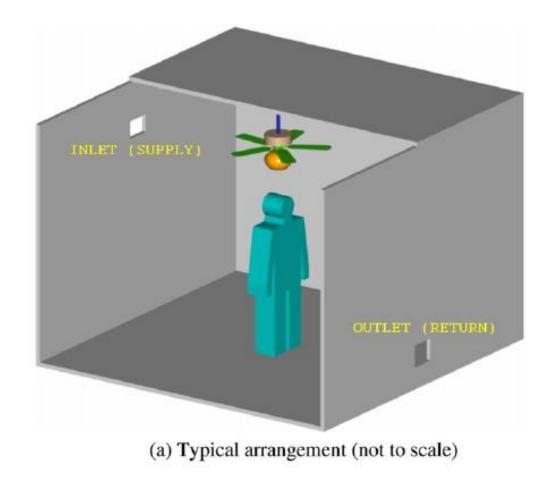
Docido

What is Thermal Comfort?

Definition:

"That condition of mind which expresses satisfaction with the thermal environment and is assessed by subjective evaluation."

ANSI/ASHRAE Standard 55-2010, Section 3



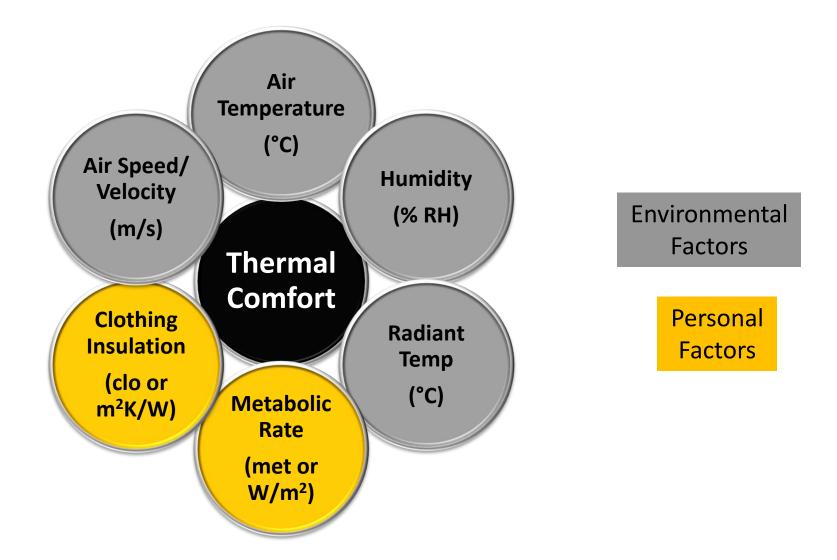
It Is All A Matter Of Perspective

ASHRAE 55 and Elevated Air Speed

ASHRAE Journal, 2012*:

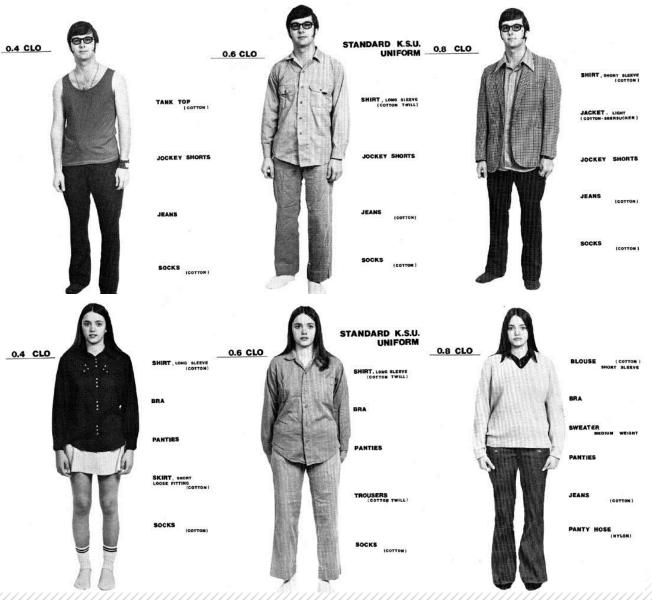
"Standard 55-2010 has been updated from the 2004 standard with provisions that allow elevated air speed to broadly offset the need to cool the air in warm conditions. The can be applied to natural ventilation applications, and to conventional overhead (and other) air-distribution systems up to an air speed of 150fpm (0.8 m/s) with no local control, and up to 240 fpm (1.2 m/s) with local control."

*John, David A., P.E., 2012 Designing Air-Distribution Systems To Maximize Comfort Picture Credit: Ho, Son H.; Rosario, Luis; Rahman, Muhammad M. 2008 Applied Thermal Engineering Thermal comfort enhanced by using a ceiling fan


Thermal Comfort

Thermal Comfort: What Affects It?

Transylvania University Arena


Thermal Comfort: What Affects It?

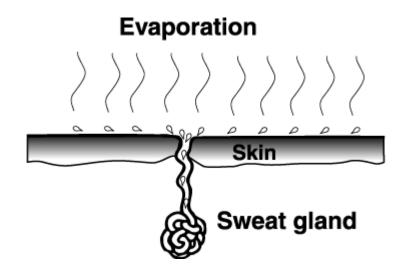
Clothing Insulation

- Clothing = thermal insulation
- Increased insulation = reduced heat loss

Clothing	Clo*
Shoes	0.02
Socks	0.03
Underwear	0.04
Trousers	0.15
Polo	0.17
Total	0.41

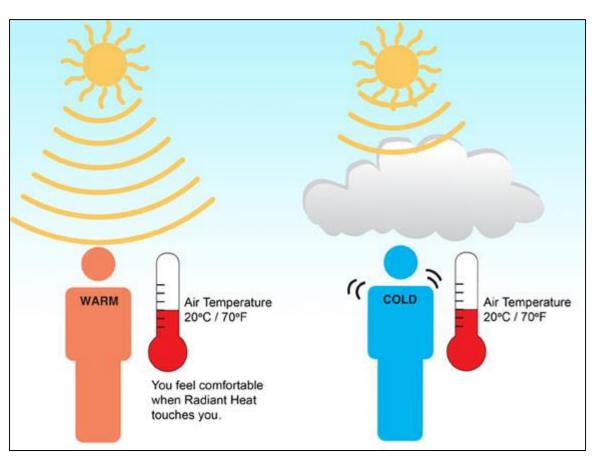
Metabolic Rate

- The amount of energy expended in a given period by a person
- 1 met = energy produced for an average person seated at rest
- Increased met rate = increased heat generation


Air Temperature

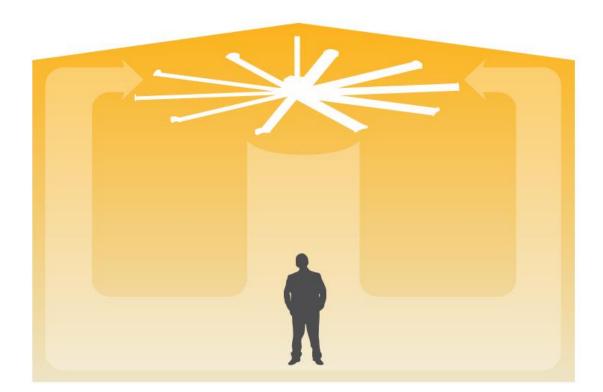
Average temperature of the air surrounding the occupant

50- -120 -100


Humidity

- Amount of moisture in the air
- Relative humidity or humidity ratio
- Sweat evaporates off skin more easily at lower humidity

Radiant Temperature


Heat is exchanged between objects at different temperatures via radiation

The Masonry Heaters Association of North America

Air Velocity

- Influences flow of heat to and from the body
- Impacts rate of moisture evaporation from the skin

All six factors work together and can be equally important

Predicting Comfort

How to Calculate Thermal Comfort

<u>Predicted Percentage of Dissatisfied (PPD)</u>
<u>Predicted Mean Vote (PMV)</u>
Operative Temperature

Comfort Zone

PPD < 10% PMV: -0.5 to +0.5 +3 Hot +2 Warm +1 Slightly warm - +0 Neutral - 1 Slightly cool -2 Cool -3 Cold

Graphic Comfort Zone Method

Requirements for use:

- Mechanically conditioned space
- Occupant activity level = 1.0 1.3 met
- Clothing worn = 0.5 to 1.0 clo
- 0.012 humidity ratio
- Air Speed < 40 fpm

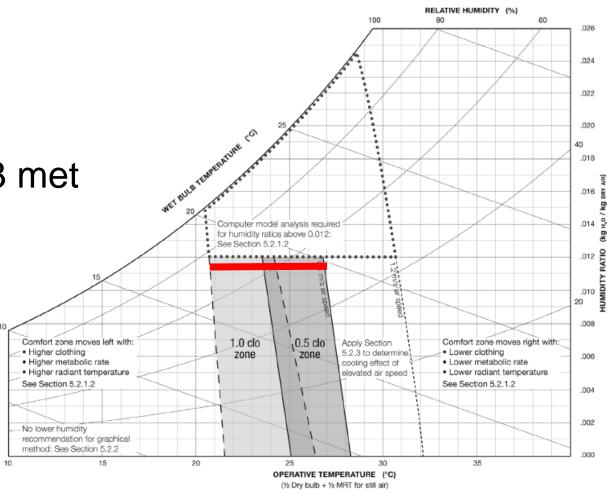


Figure 5.2.1.1 Graphical Comfort Zone Method – ASHRAE Standard 55 -2010

Computer Model Method

Requirements for use:

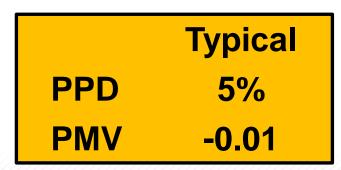
- Occupant activity level = 1.0 – 2.0 met
- Clothing worn ≤ 1.5 clo

http://smap.cbe.berkeley.edu/comforttool

https://www.ashrae.org/resources-publications/bookstore/thermal-comfort-tool

CENTER FOR THE BUILT ENVIRONMENT THERMAL COMFORT TOOL

Thermal Comfort Survey


@ 2009, American Society of Neating, Performance and Ah-Con Additional reproduction, distribution, or Fancentizzion in either print or	ditioning Engineers. Inc. (www.ashrae.org). For personal use only. digital form is not permitted without ASHRAE's priorwritten permission.		© 2009, Amerikas Society of Heating, Refugerating and Ale C. Additional reproduction, distribution, or faustmission is either print of	nditioning Engineers, Inc. (svew.ashaarang). For personal use only. r digital from 's: not permitted without ASHRAE's priorventies permission.
E1. THERMAL ENVIRONMENT POINT-IN-TIME SURVEY	5. Are you near an exterior wall (within 15 ft)? E2. THERMAL ENVIRONMENT Yes SATISFACTION SURVEY ¹		 Adjustable floor air vent (diffuser) Portable fan 	
Record the approximate outside air temperature and seasonal conditions: Winter Spring Summer Fall	 No 6. Are you near a window (within 15 ft ☐ Yes ☐ No 	0)?	 Either (a) place an "X" in the appropriate place where you spend most of your time: 	 Thermostat Operable window None of these
2. What is your general thermal sensation? (Check the one that is most appropriate)	7. Using the list below, please check ear that you are wearing right now. (Che		SAMPLE (Note to survey designer: Provide appropriate sketch for your space or	Other: Please respond to the following questions based on your
(Note to survey designer: This scale must be used as-is to keep the survey consistent with ASHRAE Standard 55.)	(Note to survey designer: This list can b discretion.)		building.)	overall or average experience in the past [six] months. (<i>Note to survey designer:</i> The above statement can be modi-
Hot Warm Slightly Warm Neutral	Short-Sleeve Dress Shirt Long-Sleeve Shorts	Nylons	or (b) place an "X" in the check box that best describes the area of the building where your space is located.	fied for a different span of time.)6. How satisfied are you with the temperature in your space? (Check the one that is most appropriate)
☐ Slightly Cool ☐ Cool ☐ Cool	Shirt Athletic Sweatpants	Boots	☐ North ☐ East ☐ South ☐ West	Very Satisfied
 Cold Either (a) place an "X" in the appropriate place where you are located now: 	Long-Sleeve Trousers Sweatshirt	Shoes	Core Don't know	If you are dissatisfied with the temperature in your space, which of the following contribute to your dissat- isfaction:
(Note to survey designer: Provide	Sweater Undershirt	Sandals r	 On which floor of the building is your space located? 1st 	a. In warm/hot weather, the temperature in my space is (check the most appropriate box):
SAMPLE appropriate sketch for your space or building.)	Jacket Long Sleeve Coveralls		2nd	(Note to survey designer: Include a scale or, as shown below, check boxes.)
	Knee-Length Overalls Skirt		Other (provide the floor number)	 Always too hot Often too hot
or (b) place an "X" in the check box that best describes the area of the building where you are located now.	Ankle-Length Slip		3. Are you near an exterior wall (within 15 ft)?Yes	 Occasionally too hot Occasionally too cold
North East South	Other: (Please note if you are wear described above, or if you think some ing is especially heavy.)		No4. Are you near a window (within 15 ft)?	 Often too cold Always too cold
☐ West ☐ Core ☐ Don't know	8. What is your activity level right not that is most appropriate)	w? (Check the one	Ves No	b. In cool/cold weather, the temperature in my space is (check the most appropriate box):
4. On which floor of the building are you located now?	Reclining Seated		 Which of the following do you personally adjust or control in your space? (Check all that apply.) 	(Note to survey designer: Include a scale or, as shown below, check boxes.)
□ 1st □ 2nd	 Standing relaxed Light activity standing 		(Note to survey designer: This list can be modified at your discretion.)	Always too hot Often too hot
 3rd Other (provide the floor number):	 Medium activity standing High activity 		Window blinds or shades Room air-conditioning unit	Occasionally too hot Occasionally too cold Offen too cold
			Portable heater Permanent heater	Always too cold
			 Door to interior space Door to exterior space Adjustable air vent in wall or ceiling 	 c. When is this most often a problem? (check all that apply): Morning (before 11am)
			Ceiling fan This survey has been adapted from the CBE occupant IEQ survey developed by the Center for the Built Environment at the Univer- sity of California at Berkeley.	 Mid-day (11am-2pm) Afternoon (2pm-5pm) Evening (after 5pm) Weekends/holidays
14	ANSI/ASHRAE Addendad, e. f. and g to ANSI/ASH	RAE Standard 55-2004	ANSI/ASHRAE Addenda d, e, f, and g to ANSI/ASHRAE Standard 55-2004	15

Elevated Air Speed and Perceived Cooling

Designing for Thermal Comfort: Cooling

Typical Cooling Values

- Air temperature (24°C)
- Humidity (50% RH)
- Metabolic rate (1.1 met)
- Radiant temperature (24°C)
- Clothing insulation (0.75 clo)
- Air speed (0.15 m/s)

Berea College Residence Hall

Baseline Model

CENTER FOR THE BUILT ENVIRONMENT THERMAL COMFORT TOOL

Designing for Thermal Comfort: Cooling

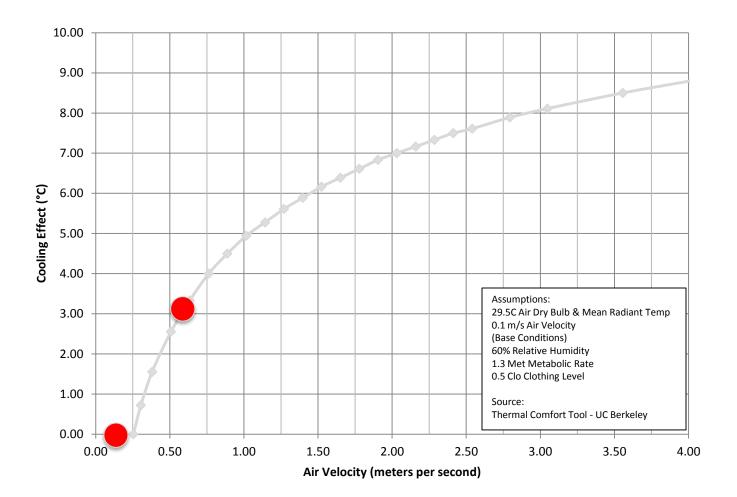
Ayteined te adiology galadeses

- Air temperature (24°C)
- Humidity (50% RH)
- Metabolic rate (1.1 met)
- Radiant temperature (24°C)
- Clothing insulation (0.75 clo)
- Air speed (0.65m/s\$)

	Alternate
PPD	5%
PMV	-0.09

CENTER FOR THE BUILT ENVIRONMENT THERMAL COMFORT TOOL

Air temperature 27.0 C °C Mean radiant temp 27.0 C °C		tive temperature	PMV with elevated air speed PPD with elevated air speed Sensation Drybulb temperature at still air Cooling effect	-0.09 5% Neutral 21.8 °C 5.2 °C
Air speed 0.6 m/ Humidity 50 %	5 Local air s	peed control	⇒ PS	YCHROMETRIC CHART
Metabolic rate		elaxed: 1.2		
-	Create custom ensem			
Globe Specify temp pressure	LEED documentation	Local ? discomfort Help		


Cooling Effect from Elevated Air Speed

Designed at 0.15 m/s

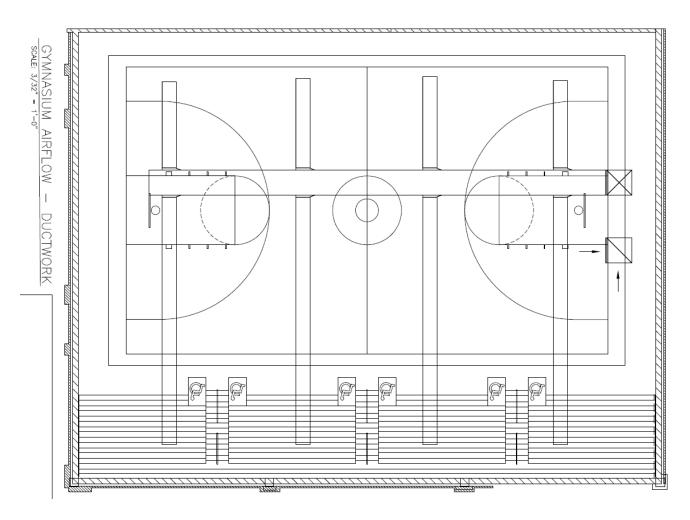
Raised to 0.6 m/s

3°C effect

Up to 18% saved energy

Air Movement Offset Temperature Increase

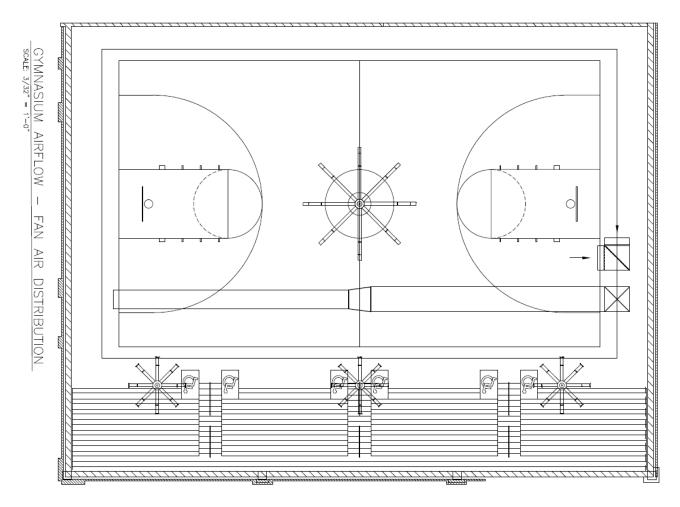
According to the CNIS,WWF and EPD one degree Celsius higher set on the air conditioner, equals a 6-7% saving of power consumption.


*Energy Institute of National Development and Reform Commission, China National Institute of Standardization (CNIS) "20 to 20 Energy Savings Manual (2012) <u>http://www.epd.gov.hk/epd/english/how_help/tips_savearth/green_tips_1.html</u> <u>https://apps.wwf.org.hk/eng/consumerguide/odf/LowCarbon_web.pdf</u> Ancillary Benefits of Elevated Air Speed – Material Cost Reduction

Elevated Air Speed in Non-Sensitive Spaces

Higher air speeds = greater potential savings

Example 1: School Gym, A/C Only



728 sq m

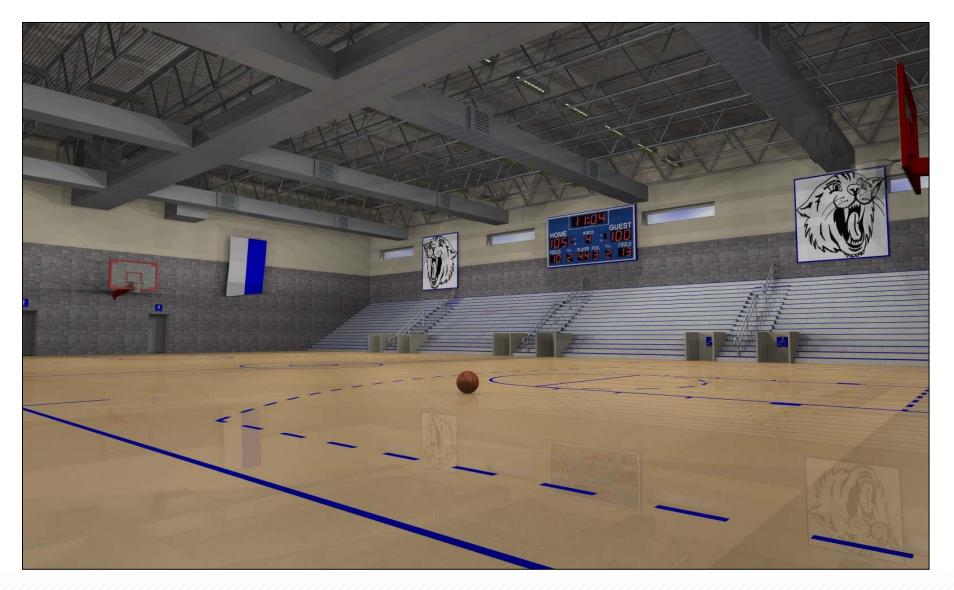
Setpoint: 23 C Feels Like: 23 C

Materials + Installation: \$620/sq m (HKD)

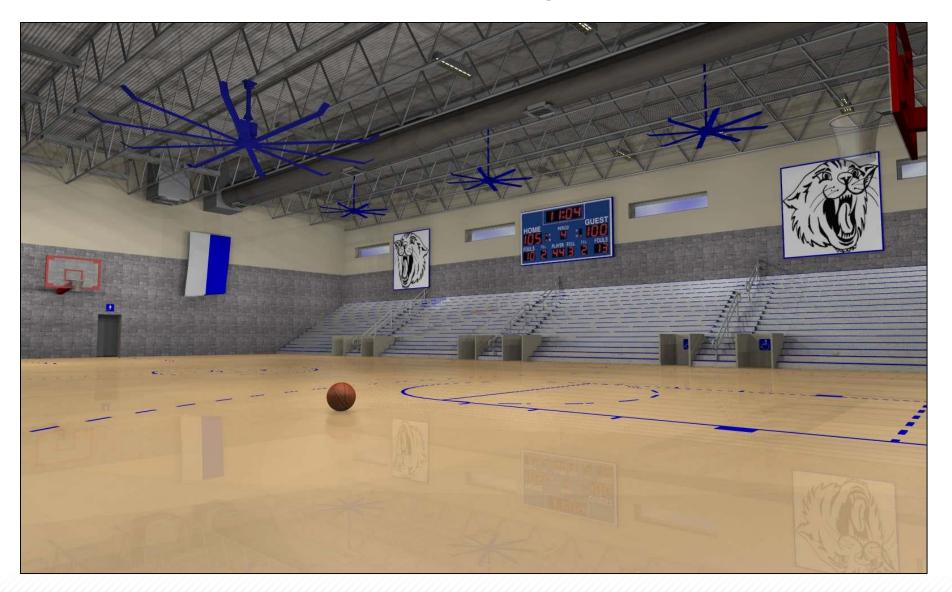
Example 1: School Gym, A/C + Fans

728 sq m

Setpoint: 27 C Feels Like: 23 C


Materials + Installation: \$570/sq m (HKD)

Example: School Gym, New Construction

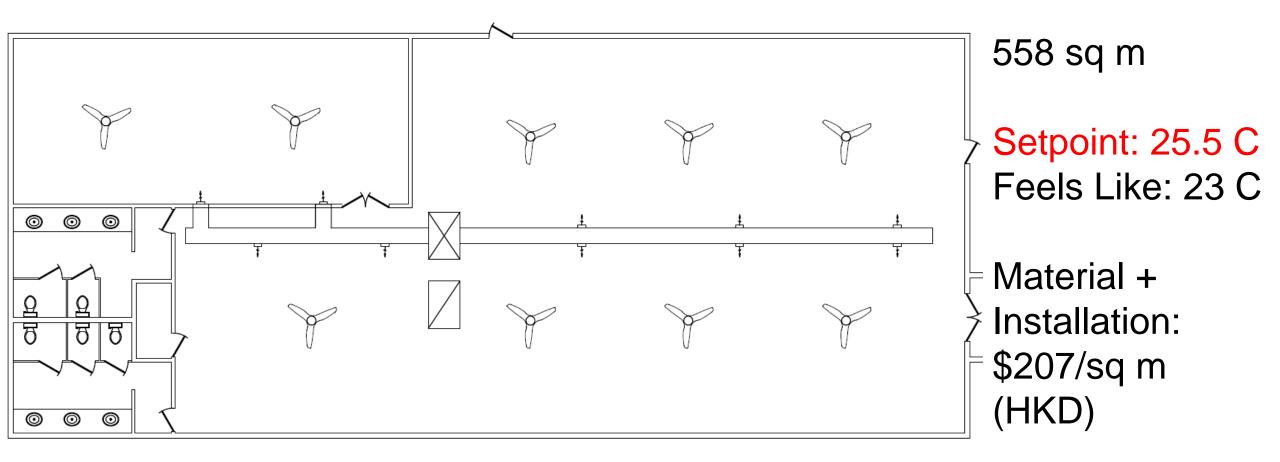

	Difference
Materials + Install Cost (HKD)	\$50/sq m
A/C Electricity Consumption	38%
Annual Utilities Cost	17%

FIGURES:	Material and Install Cost (HKD)			Gymnasium Energy Consumption
AC Only	\$448,335	\$30,737	21,498 kWh	38,841 kWh
Fans + AC	\$412,168	\$25,653	13,382 kWh	30,725 kWh

Example 1: School Gym, A/C Only

Example 1: School Gym, Fans + A/C

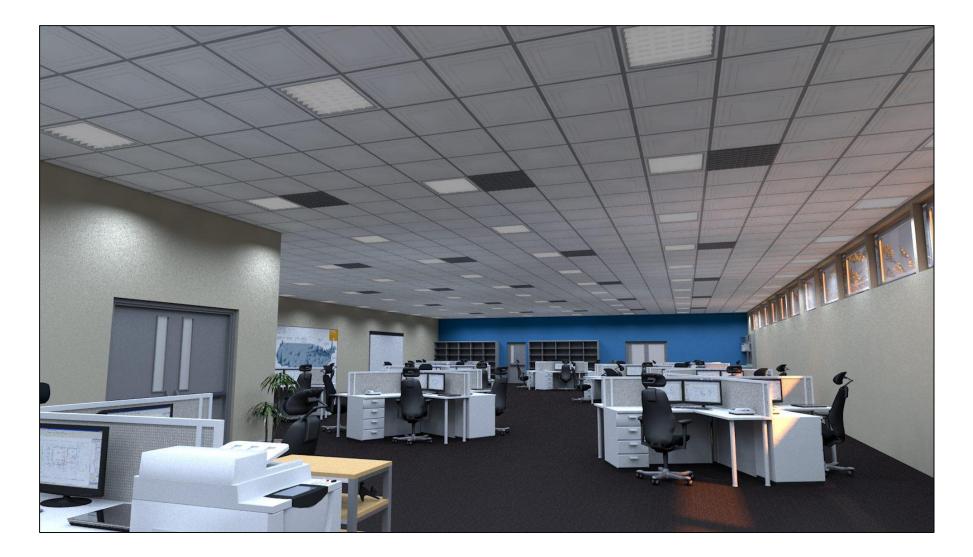

Elevated Air Speed in Sensitive Spaces



Low air speeds = No disturbance in the space

Example 2: Office Space, A/C Only

Example 2: Office Space, Fans + A/C

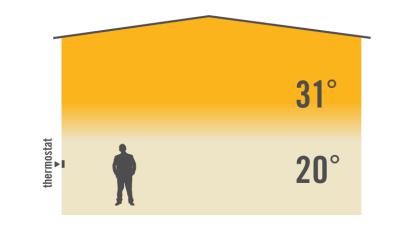


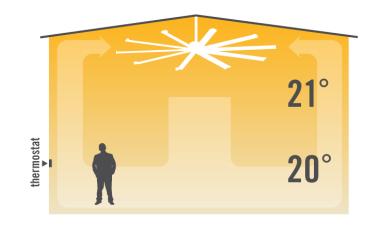
Example 2: Office Space

\$263/sq m
24%
10%
-

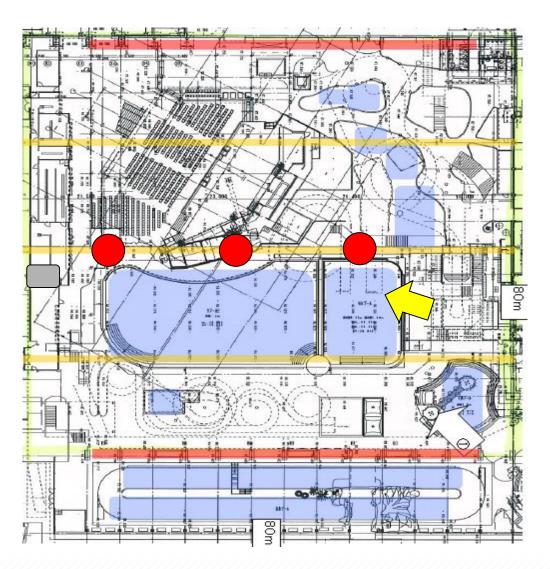
	Material and Install Cost (HKD)		AC Electricity Consumption	Office Energy Consumption
AC Only	\$261,051	\$40,905	27,972 kWh	57,416 kWh
Fans + AC	\$114,576	\$36,743	21,319 kWh	50,763 kWh

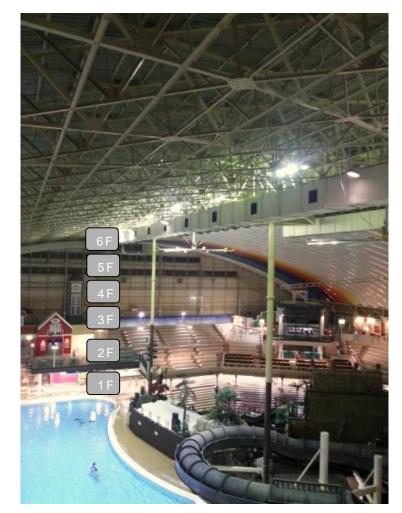
Example 2: Office Space, A/C Only


Example 2: Office Space, Fans + A/C

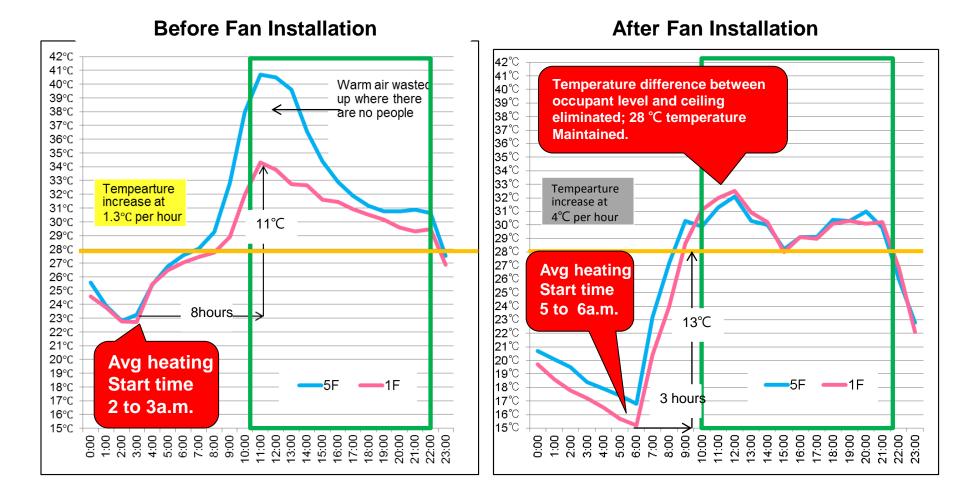


Ancillary Benefits of Elevated Air Speed – Destratification


Heating and Stratification


- Hot air rises
- Difficult to get uniformity
- Stratification of 1 1.5°C/m
- Higher average space temperature, heat loss, equipment runtime

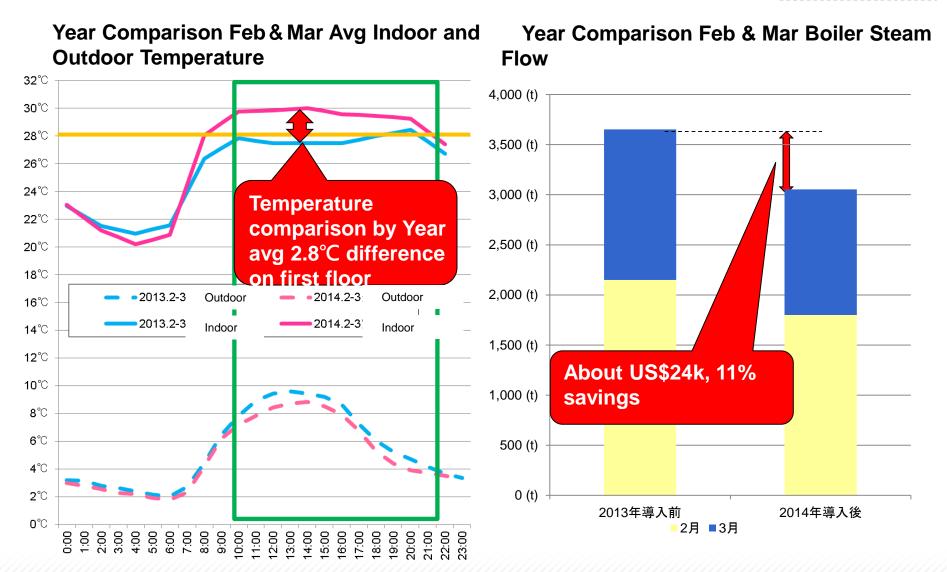
DESTRATIFICATION – CASE STUDY



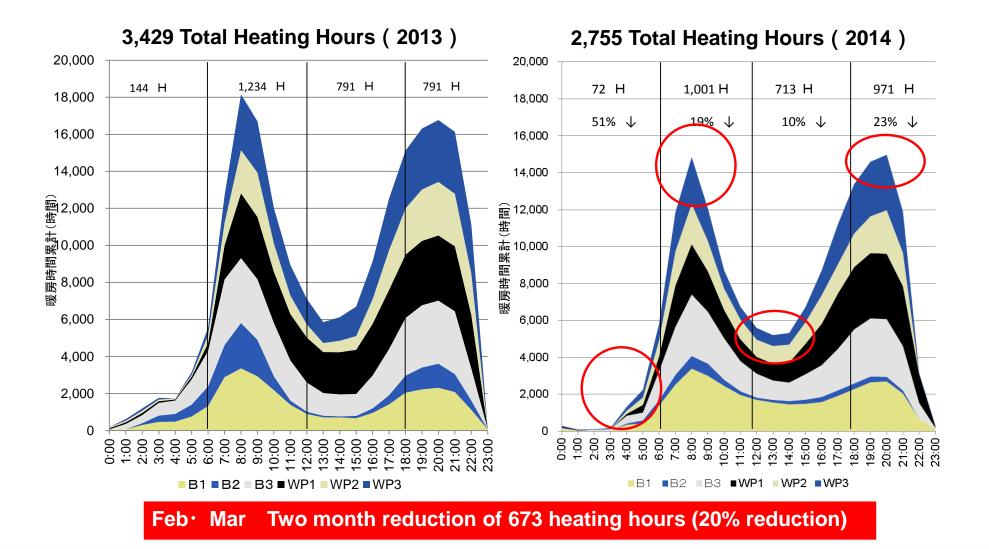
47

Destratification – Case Study

BENEFITS① DESTRATIFICATION


49

BASIC DATA


		Feb/Mar 2013	Feb/Mar 2014	Difference	備考
Good Weather Hours	Snow	16	97	81	
	Rain	94	103	9	
	Cloudy	442	486	44	There were 56 fewer good weather hours than The previous year
	Total Bad weather hours	552	686	134	
	Clear	1164	1,030	-134	
	Sunshine	341	338	-4	
	Avg Outdoor Temp (°C)	5.39	4.86	-0.5	14 year record cold
	ndoor Pool Side (°C) Femperature //10)	26.57	29.35	2.8	Indoor temperature raised
Boiler Steam output (t) (heating oil)		3,663	3,256	-406	11% reduction from previous year
Total H	eating Hours	3,429	2,756	-673	20% reduction from previous year
Energy Costs 1000yen/2 months		¥21,975	¥19,539	¥−2,437	1kg steam = 6 yen
CO2発生量(t)		730	649	-81	燃料使用料KL(杰氨重(t)÷13.5)×39.1(発熱重)GJ/klx0.0189xtC/GJx44/12

FEBRUARY-MARCH TOTAL PERFORMANCE BENEFITS

51

HEATING TIME COMPARISON

SUMMARY

[Challenge before the introduction]

 Heating cost of about US\$1million per year

Costs continued to increase due to Yen depreciation and rising energy prices

- ② Dilemma of saving energy versus customer satisfaction
- ③ Need 24 hour monitoring of air conditioning system

*Could only raise the temperature 1~1.5°C per hour, requiring a heating start time of 2-3a.m. in winter

④ Wasted energy from stratification

[Effect after the introduction]

① Cost savings of about US\$100k per year

With equivalent weather conditions, test data indicates the possible savings of US\$15k per month

Energy savings, without compromising the comfort of customers

- Night management hours decreased, and heating start time delayed
 Heating time doubled to 3~4°C per hour Heating start time can start at 6-7a.m.
- ④ Realization of energy efficiency

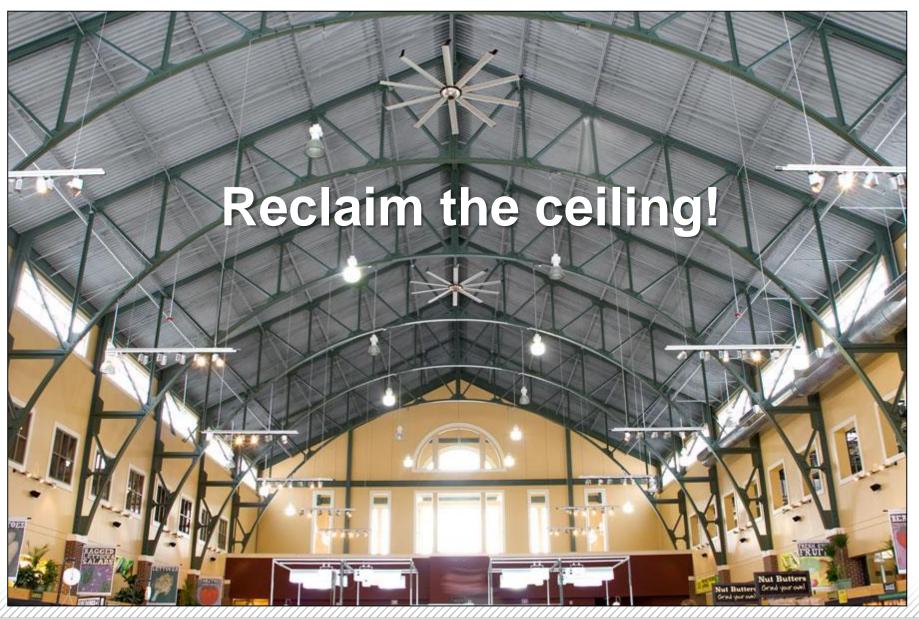
SUPPLEMENTAL BENEFITS

[Cost reduction, even in winter, in addition to improving comfort]

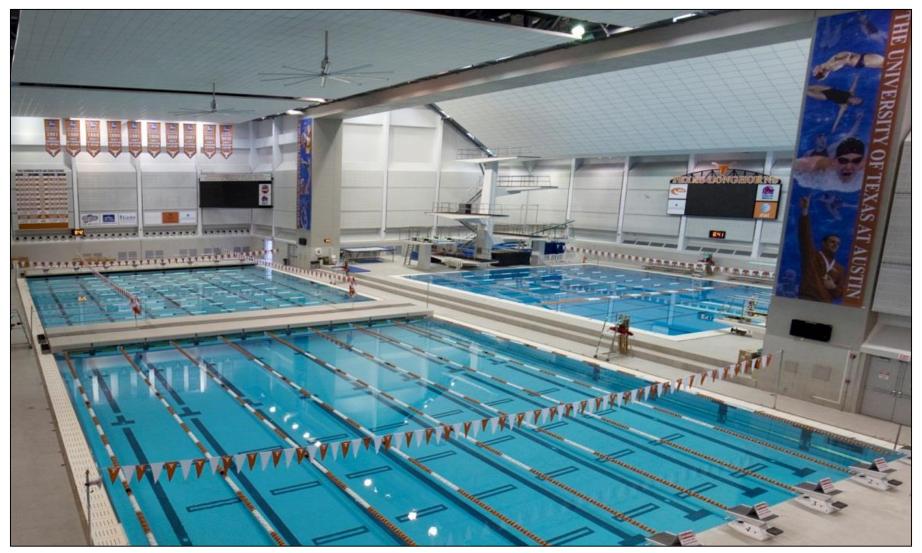
① During the summer vent out warm air

In the summer the dome would fill with heat

The fans will allow for the warm air to vent through ceiling window and improve comfort


② Production equipment

It is like having a Hawaiian ocean breeze in the building


③ Improved environment for plants

Ancillary Benefits of Elevated Air Speed – Others

Air Movement and Ductwork Minimization

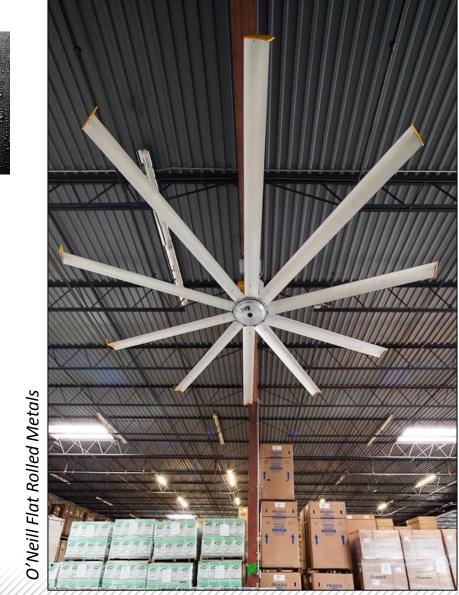
Air Movement and Indoor Air Quality

Texas Swim Center at University of Texas, Austin

Air Movement and Condensation Mitigation

Problem:

 Moist air + cold surface = condensation



Leads to:

- Mold Growth
- Corrosion of metal
- Safety

Solution:

- Disturbing stagnant air film
- Increasing surface temperature

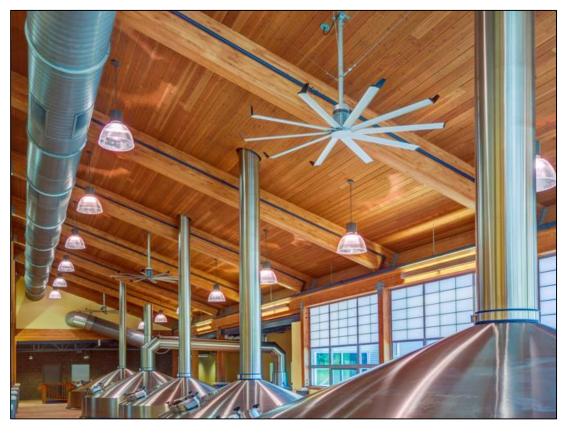
O'Neal Flat Rolled Metals

- Spring & Fall temperature swings

 + high thermal mass product
 + moist air
 - = condensation!!
- \$250,000 USD annual product loss reduction
- Increased worker safety

Elevated Air Speed contributes to Green Building Standards

Elevated Air Speed and Green Building Standards


LEED BD+C

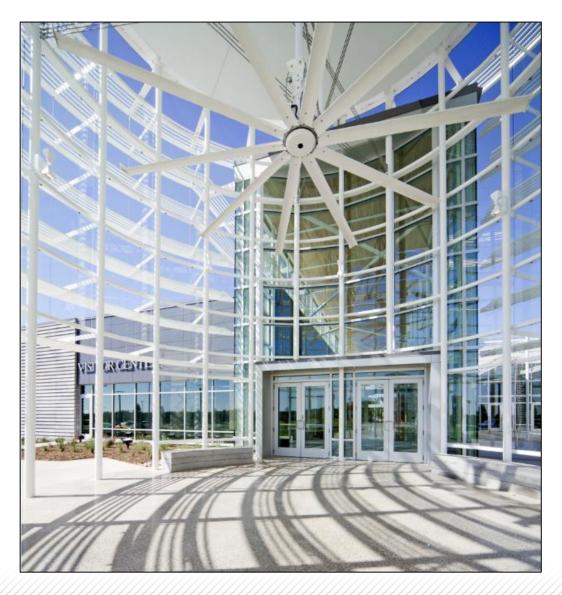
- EA Prereq 2 Minimum Energy Performance
- EA Credit 2 Optimize
 Energy Performance
- EA Credit 4 Demand Response
- EA Credit 6
 Enhanced
 Refrigerant
 Management

BEAM Plus

- EU P1 Minimum Energy Performance
- EU 1 Reduction of CO2 Emissions
 - EU 1 Option 2 Passive Design
- EU 2 Peak electricity reduction
- EU 9 Energy Efficient appliances

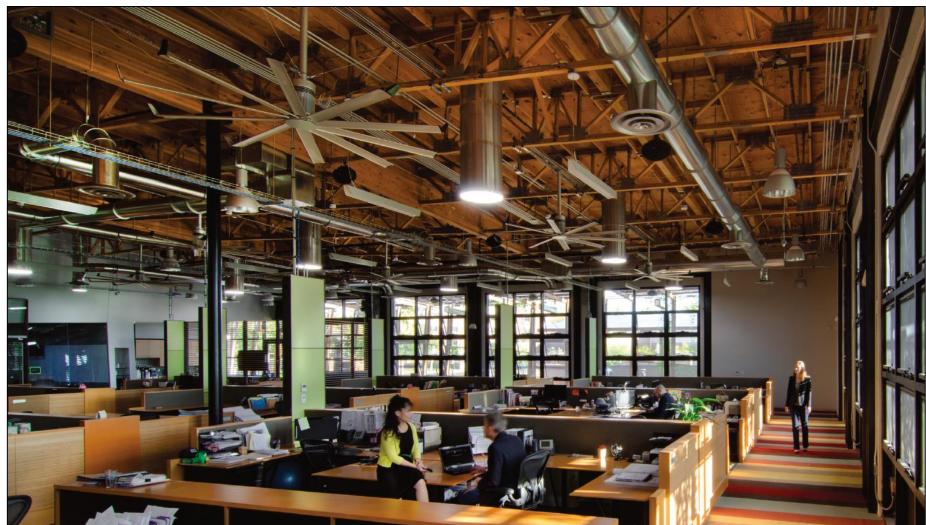
Elevated Air Speed and Green Building Standards

LEED BD+C


- EQ Prerequisite 1: Minimum Indoor Air Quality Performance
- EQ Credit 1: Enhanced Indoor Air Quality Strategies
- EQ Credit 5 Thermal Comfort
- IN Credit 1: Innovation

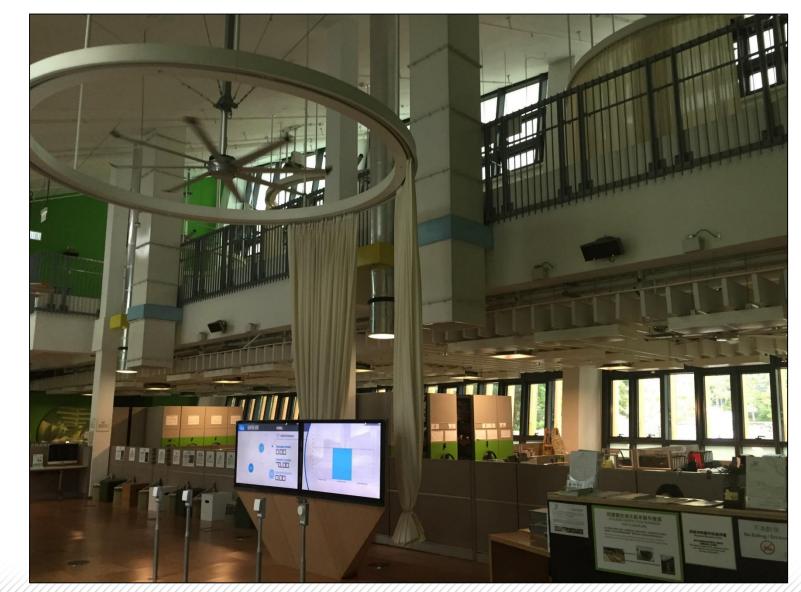
BEAM Plus

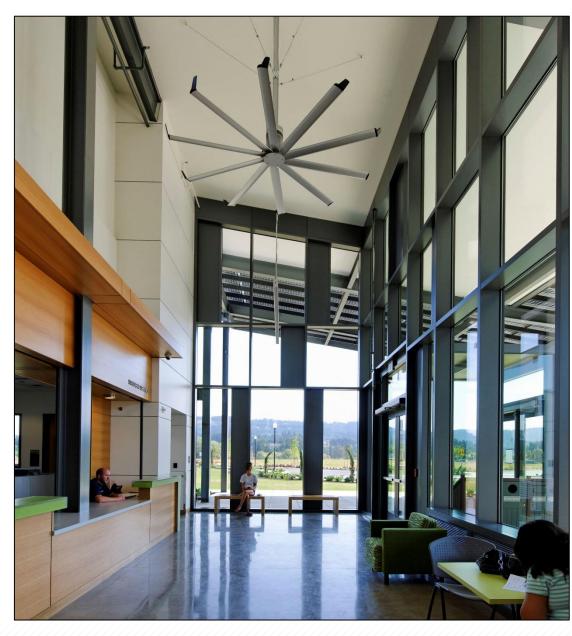
- IEQ P1 Minimum ventilation performance
- IEQ 9 Increased ventilation
- IEQ 14 Thermal comfort in naturally ventilated premises



DPR Construction

Fans are a huge component to our passive cooling comfort system. Our net-zero design would not work without them. The fans also add to our look; we've received a lot of compliments on them.




Zero Carbon Building

We highly recommend the use of fans for ventilation wherever possible and for supplementing the airconditioning system to save energy.

- Green building is continuing to grow internationally
- Several green rating systems
- Incorporating elevated air speed in a project can contribute to earning credits

Portland Community College, Newberg, OR Net-Zero Energy

Case Studies

Case Study: Berea College Deep Green Residence Hall

Challenge: Enhanced HVAC Efficiency

- Berea College, a pioneer in sustainable living
- The project required innovative HVAC design
- including sustainable components and beautiful design.

Case Study: Berea College Deep Green Residence Hall

- Use of ceiling fans made from sustainable Moso
- 58% energy savings when compared to standard dorms.

Together, these innovations allow for:

- higher set points
- contribute to a healthy environment
- LEED Platinum certification

Case Study: Bullitt Center

Challenge: Increased Energy Savings

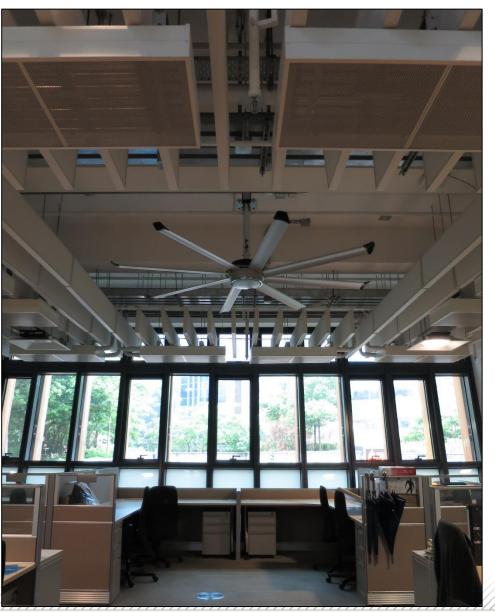
- Target Living Building certification
- Requires both water and energy selfsufficiency


Credit: BullittCenter.org

Case Study: Bullitt Center

Tenants have turned to energy efficient products such as ceiling fans that deliver an 80% improvement in energy efficiency over conventional ceiling fans.

The solutions with ceiling fans contributed to a building that:


- Energy savings and higher IAQ
- Energy efficiency is 83% greater than a typical Seattle office building
- Target the Living Building certification

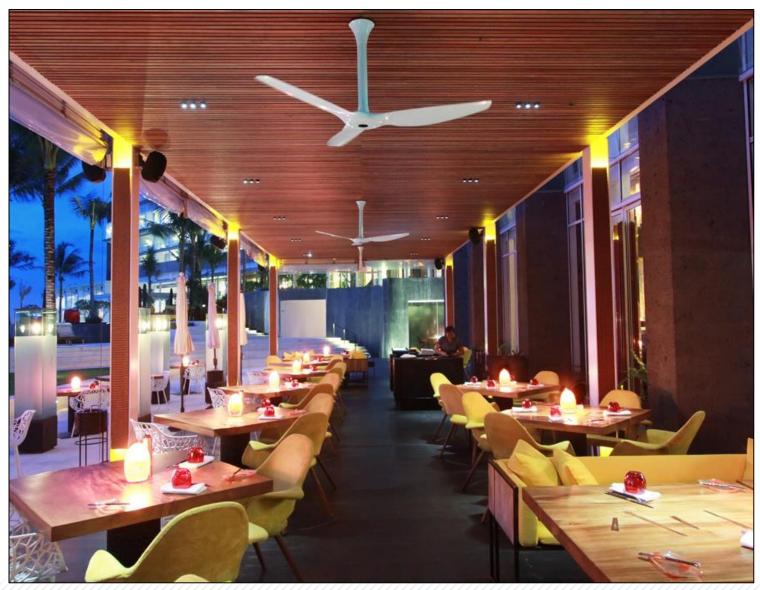
Zero Carbon Building

Challenge: Natural Ventilation and Thermal Comfort

- Hong Kong's first zero-emission building
- Ingenious ventilation and cooling solution
- Typical air conditioner unable to meet the designers' goal

Zero Carbon Building

Pairing HVLS fans with other innovative solutions to the ZCB's energy use goals, accomplished:

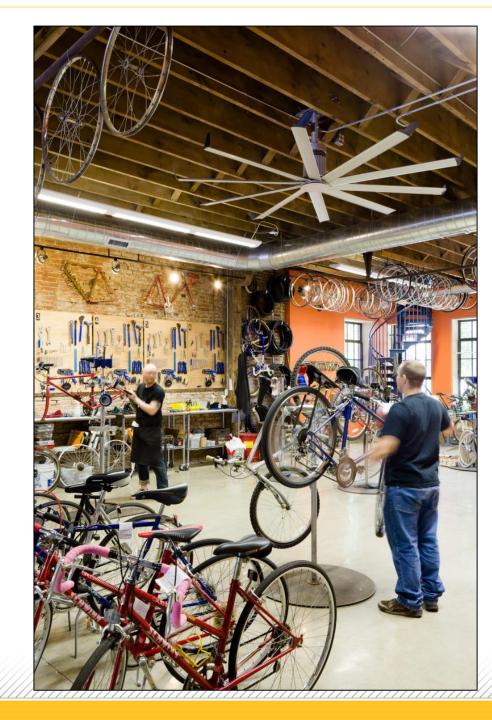

- an increased in air distribution
- complement the operation of the chilled beam and underfloor displacement

W Bali – Seminyak Retreat & Spa

Challenge: Improve Guest Comfort

- Attempts to mechanically regulate temperature
- Costly and inefficient
- Unwilling to sacrifice the comfort of their guests

W Bali – Seminyak Retreat & Spa


- Increase the thermal comfort of patrons and employees
- Striking design feature
- Not disrupting the guests' activities

Summary

Air Movement =

- Improve thermal comfort
- Summer and Winter energy savings
- Sustainable design
- Improve air distribution
- Reduce condensation

Questions?